Fig. 4

A HFD did not affect acute stress-induced fear behaviors but did cause sex-specific metabolic alterations. (A) Experimental design of the comprehensive 10-week study conducted to investigate the role of diet and acute stress. (B) Weight gain percentages plotted through 10 weeks of the HFD/chow diet regimen (n = 10, two-way ANOVA, F3,528 = 188.3, ****p < 0.0001) (Post hoc comparison, n = 10, Tukey’s multiple comparisons test, p < 0.05 from week 2) (C) Percent fat mass in HFD/chow-fed mice (n = 10; two-way ANOVA, F1,48 = 17.69; ***p < 0.001) (post hoc comparison, n = 10, Tukey’s multiple comparisons test, **p < 0.01). (D) Percent freezing in HFD/chow-fed stressed and no stressed groups (n = 5, one-way ANOVA, F7,44 = 1.388, ****p < 0.0001) (post hoc comparison, n = 5, Tukey’s multiple comparison test, Chow-NS-F v. Chow-S-F, Chow-NS-M v. Chow-S-M, HFD-NS-F v. HFD-S-F, HFD-NS-M v. HFD-S-M; ****p < 0.0001). (E) Plasma glucose levels from the GTT performed at week 10 in HFD-NS/S female and male mice (n = 5, two-way ANOVA, F3,168 = 18.53, ****p < 0.0001). AUC graph for the week 10 GTT test in HFD/chow-fed female mice (n = 5, one-way ANOVA; F3,16 = 0.1454, p = 0.07). (F) Plasma glucose levels from the GTT performed at week 10 in Chow–NS/S female and male mice (n = 5, two-way ANOVA, F3,120 = 9.057, ****p < 0.0001). AUC graph for the week 10 GTT test in chow-fed mice (n = 5, one-way ANOVA, F3,16 = 1.206, p = 0.41). (G) Energy expenditure (EE) (kCal/hr) in HFD-fed S and NS mice (n = 5; one-way ANOVA, p > 0.05). (H) Energy expenditure (EE) (kCal/hr) in chow-fed mice under either the S or NS conditions (n = 5; one-way ANOVA, p > 0.05)