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Abstract

Background: Inadequate copper intake and increased fructose consumption represent two important nutritional
problems in the USA. Dietary copper-fructose interactions alter gut microbial activity and contribute to the
development of nonalcoholic fatty liver disease (NAFLD). The aim of this study is to determine whether dietary
copper-fructose interactions alter gut microbial activity in a sex-differential manner and whether sex differences in
gut microbial activity are associated with sex differences in hepatic steatosis.

Methods: Male and female weanling Sprague-Dawley (SD) rats were fed ad libitum with an AIN-93G purified
rodent diet with defined copper content for 8 weeks. The copper content is 6 mg/kg and 1.5 mg/kg in adequate
copper diet (CuA) and marginal copper diet (CuM), respectively. Animals had free access to either deionized water
or deionized water containing 10% fructose (F) (w/v) as the only drink during the experiment. Body weight, calorie
intake, plasma alanine aminotransferase, aspartate aminotransferase, and liver histology as well as liver triglyceride
were evaluated. Fecal microbial contents were analyzed by 16S ribosomal RNA (16S rRNA) sequencing. Fecal and
cecal short-chain fatty acids (SCFAs) were determined by gas chromatography-mass spectrometry (GC-MS).
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Results: Male and female rats exhibit similar trends of changes in the body weight gain and calorie intake in
response to dietary copper and fructose, with a generally higher level in male rats. Several female rats in the CuAF
group developed mild steatosis, while no obvious steatosis was observed in male rats fed with CuAF or CuMF diets.
Fecal 16S rRNA sequencing analysis revealed distinct alterations of the gut microbiome in male and female rats.
Linear discriminant analysis (LDA) effect size (LEfSe) identified sex-specific abundant taxa in different groups. Further,
total SCFAs, as well as, butyrate were decreased in a more pronounced manner in female CuMF rats than in male
rats. Of note, the decreased SCFAs are concomitant with the reduced SCFA producers, but not correlated to hepatic
steatosis.

Conclusions: Our data demonstrated sex differences in the alterations of gut microbial abundance, activities, and
hepatic steatosis in response to dietary copper-fructose interaction in rats. The correlation between sex differences
in metabolic phenotypes and alterations of gut microbial activities remains elusive.
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Introduction
The prevalence of nonalcoholic liver disease (NAFLD) in
the USA has increased rapidly in the past two decades,
from 19 to 24%, which is close to the global prevalence
of 25.24% [1, 2]. Based on the epidemiological data from
obesity and type 2 diabetes in adults, the estimated
prevalence of NAFLD will continue to increase up to
33.5% by 2030, and nonalcoholic steatohepatitis (NASH)
will increase proportionately from 20% of NAFLD to
27%, ranking it as a top indication for liver transplant-
ation [3, 4].
Of note, NAFLD and NASH exhibit age and sex differ-

ences, with a higher prevalence in men than in premen-
opausal women. Conversely, a higher rate of NAFLD
was found among the postmenopausal women [5–7]. In
agreement with this finding, sex differences also exist in
the risk factors, such as obesity and type 2 diabetes [8,
9]. Biological sex differences are exhibited in many
physiological phenomenon, including fat distribution,
triglyceride storage in the liver and muscle [10], and
fatty acid and glucose metabolism [11]. Therefore, un-
derstanding sex differences in physiology and patho-
physiology is required for precision medicine.
Sex hormones and sex chromosome are two major

factors driving sex differences [7]. The role of sex hor-
mones has been demonstrated in both human and ani-
mal studies. For example, postmenopausal women with
estrogen deficiency display a higher risk for NAFLD
progression to fibrosis [12]. In contrast, liver injury was
improved by hormone replacement therapy in postmen-
opausal women with type 2 diabetes [13]. Ovariecto-
mized (OVX) female rats exhibit exacerbated hepatic
steatosis when exposed to high-fat high-fructose diet
(HFFD), which was reversed by estrogen replacement
[14]. A four-core genotype mouse model (XX gonadal
male and female, XY gonadal male and female) allows
for the identification of whether sex differences arise
from the sex chromosome complement. Using this

approach, it was revealed that XX mice are prone to de-
veloping obesity and fatty liver in response to high-fat
diet, regardless of sex hormones [15].
In addition to genetics and sex hormones, diet is a

key environmental factor leading to sex differences in
metabolic diseases [16]. Copper and fructose are two
dietary factors known to be critical in the pathogen-
esis of NAFLD [17–22]. Sex differences in the meta-
bolic effects of fructose and/or copper deficiency have
been noted in rodents [23–26] as well as in humans
[27, 28], with more harmful effects reported in males
and more protective effects in females, which is con-
sistent with the sex differences in NAFLD [7]. In fact,
sex differences in fructose-induced metabolic effects
are more complex and vary by tissue and organ [14,
29, 30]. Although sex hormones are one of the factors
leading to sex differences in copper-fructose
interaction-induced metabolic disorders [26], the
underlying mechanisms are largely unknown.
A growing body of evidence has shown that gut micro-

biota play a causal role in driving the development of
obesity, diabetes, and NAFLD [31–34]. Diet, as one of
the most common environmental factors, shapes the gut
microbiome [35]. Interestingly, diet-induced alterations
of gut microbiota exhibit a sex-dependent phenotype
[36, 37]. Previous studies have shown that distinct alter-
ations of the gut microbiome are linked to specific meta-
bolic traits [38] as well as to different stages of NAFLD
[39, 40], leading to the hypothesis that sex differences in
the gut microbiota are linked to distinct metabolic phe-
notypes or disease severity. Our previous studies have
shown that dietary copper-fructose interactions shifted
gut microbiota and correlated to the development of
hepatic steatosis in male rats [41, 42]. Given that diet
shapes the gut microbiome in a sex-specific manner
[36], we aimed to determine whether dietary copper-
fructose interaction alters gut microbiota and induces
hepatic steatosis in a sex-dependent manner and
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whether sex differences in metabolic phenotype contrib-
ute to the distinct alterations of the gut microbiota.

Materials and methods
Animals and diets
Male and female weanling Sprague-Dawley rats (35–45
g) from the Harlan Laboratories (Indianapolis, IN) were
fed (ad lib) an AIN-93G purified rodent diet with a de-
fined copper content. The rats received either 1.5 mg/kg
or 6.0 mg/kg of copper as marginal or adequate doses,
respectively, for 8 weeks. Control animals were fed ad-
equate copper with no added fructose. The animals were
single housed in stainless steel cages without bedding in
a temperature- and humidity-controlled room with a 12:
12-h light–dark cycle. Animals had free access to either
deionized water or deionized water containing 10% fruc-
tose (w/v). Fructose-enriched drinking water was chan-
ged twice a week. Food consumption and body weight
were monitored on a weekly basis. After a 2-h fasting, all
the animals were sacrificed under anesthesia with keta-
mine/xylazine (100/10mg/kg I.P. injection). Blood was
collected from the inferior vena cava, and citrated
plasma was stored at − 80 °C for further analysis. Por-
tions of liver tissue were fixed with 10% formalin for
subsequent sectioning, while others were snap-frozen
with liquid nitrogen. All studies were approved by the
University of Louisville Institutional Animal Care and
Use Committee, which is certified by the American As-
sociation of Accreditation of Laboratory Animal Care.

Liver enzyme and plasma biochemical assays
Liver enzymes assays were performed with commercially
available kits: alanine aminotransferase (ALT), aspartate
aminotransferase (AST), cholesterol, triglyceride (TG)
(Thermo Fisher Scientific Inc., Middletown, VA, USA),
glucose (Millipore Sigma, St. Louis, MO, USA), and non-
esterified fatty acids (NEFA) (Wako Chemicals, Rich-
mond, VA, USA).

Histology
Formalin-fixed, paraffin-embedded liver sections were
cut at 5-μm thickness and stained with hematoxylin and
eosin (H&E).

Hepatic triglyceride assay
Liver tissues were homogenized in 50 mM sodium chlor-
ide solution. Hepatic total lipids were extracted with
chloroform/methanol (2:1) according to the method de-
scribed by Bligh and Dyer [43]. Hepatic triglyceride was
determined by commercially available kit (Thermo
Fisher Scientific Inc., Middletown, VA, USA).

16S ribosomal RNA (16S rRNA) gene library preparation
and sequencing on the Illumina MiSeq
Fecal pellets were collected into sterile tubes at the end of
the experiment and stored at − 80 °C. Microbial genomic
DNA was extracted from frozen fecal samples using
DNeasy PowerSoil kit (Cat#:12888-100, Qiagen, German-
town, MD, USA) according to the manufacturer’s instruc-
tions. The composition of fecal microbiota was analyzed
using Illumina MiSeq technology targeting the variable V3
and V4 regions of 16S ribosomal RNA. 16S variable re-
gions were amplified using 12.5 ng microbial genomic
DNA. PCR conditions are as follows: 95 °C for 3min; 25
cycles of 95 °C for 30 s, 55 °C for 30 s, and then 72 °C for
30 s; and 72 °C for 5 min. The primers used for 16S
Amplicon PCR are as follows: Forward: 5′-TCGTCG
GCAGCGTCAGATGTGTATAAGAGACAGCCTACGG
GNGGCWGCAG; Reverse: 5′-GTCTCGTGGGCTCGG
AGATGTGTATAAGAGACAGGACTACHVGGGTATC
TAATCC. Index PCR was performed to attach dual indi-
ces and Illumina sequencing adapters using the Nextera
Index Kit (Cat#: FC-121-1012, Illumina, San Diego, CA,
USA). Each step was followed by the PCR clean-up, using
AMPure XP beads to obtain a purified library. After li-
braries were normalized, pooled, and denatured, sequen-
cing was done using Illumina MiSeq Reagents kit v3 (600
cycles, read lengths up to 2 × 300 bp) (Cat#: MS-102-
3003, Illumina, San Diego, CA, USA) on an Illumina
MiSeq instrument.

Sequencing data analysis
Quality control of raw sequence files was performed
using FastQC and further analyzed using QIIME 2 (ver-
sion 2019.04) [44]. The workflow is shown in the sche-
matic diagram (supplementary Figure 1). Briefly, the
paired-end files per sample were merged and imported
into a QIIME 2 artifact. The sequences reads were then
demultiplexed and denoised into amplicon sequence var-
iants (ASVs) (supplementary Table 8) using DADA2 in
QIIME 2 which can identify more real variants and out-
put fewer spurious sequences than other methods. The
resulted feature table and representative sequences were
used for the downstream analysis. Rarefaction curve
using the observed operational taxonomy unit (OTU)
and Shannon index generated by QIIME 2 were used as
metrics of α-diversity [45]. Principal coordinate analysis
(PCoA) was performed to compare microbial commu-
nity structure between groups (β-diversity), using both
weighted and unweighted UniFrac [46]. Heat map ana-
lysis of OTU abundance was performed using R software
(https://www.r-project.org/). Linear discriminant analysis
(LDA) effect size (LEfSe) method was used to find the
most differentially abundant enriched microbial taxa be-
tween the different diets. The analysis was performed on
Galaxy platform (http:/huttenhower.sph.harvard.edu/
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galaxy). The data generated from LEfSe analysis was
shown by cladogram and histogram with LDA score
> 2 and a significance of α < 0.05, as determined by
Wilcoxon rank-sum test [47–49]. The 16S data set
was used for metagenome predictions using the soft-
ware package PICRUSt2 [50]. Predictions were based
on Kyoto Encyclopedia of Genes and Genomes
(KEGG) database pathways [51], and the output was
based on the pathway mapping of the MetaCyc data-
base [52]. A Venn diagram was used to show genus
distribution between groups.

Short-chain fatty acid (SCFA) measurement by gas
chromatography-mass spectrometry (GC-MS)
About 50mg of cecal and fecal stool samples were
weighed, and polar metabolites were extracted for GC-
MS analysis using established methods as described pre-
viously [53].

Statistical analysis
Data were expressed as mean ± SD (standard deviation)
and analyzed using two-way ANOVA to test the factors
of copper, fructose, and their interactions (copper ×
fructose), followed by Tukey’s multiple comparison test.
The Kruskal-Wallis test was used for pairwise compari-
son between treatment groups (α-diversity). Comparison
of the mean distance matrix (β-diversity) between two
treatment groups using PERMANOVA (a nonparametric
method for multivariate analysis of variance) with per-
mutation tests was based on UniFrac distance matrix
(999 Monte Carlo permutations). Two-tailed nonpara-
metric Spearman correlation was done with GraphPad
Prism. Differences at p ≤ 0.05 were considered to be
statistical significant.

Results
Characterization of dietary copper-fructose interaction on
metabolic phenotypes in male and female rats
Male and female rats exhibit similar trends of changes in
the body weight and body weight gain in response to
dietary copper and fructose, with a generally higher level
in male rats (Fig. 1, Tables 1 and 2). Two-way ANOVA
analysis showed that the liver weight of female rats, but
not male rats, was affected by dietary copper content
within the 8-week period. The liver/body weight ratio
was altered by both dietary copper and fructose. How-
ever, copper-fructose interaction was apparent only in
female rats. While the variations of perigonadal white
adipose tissue (WAT) weight as well as WAT/body
weight ratios were related to dietary copper content in
male rats, they were more likely to be affected by dietary
fructose in female rats. The energy efficiency ratio (EER,
%), i.e., the ratio of body weight gain and total energy in-
take [54, 55], was decreased by dietary fructose in both

male and female rats compared to their controls, sug-
gesting the metabolic effects of fructose may not be con-
tributed to the calorie intake. Ad libitum feeding of
fructose via drinking water led to a significant increase
in water intake and a decrease in pellet food intake. Al-
though there was a trend toward an increase in the total
energy intake in rats fed with fructose compared to
those without, the difference did not reach statistical sig-
nificance in either males or females. Plasma triglyceride
was significantly elevated in male rats fed with fructose
regardless dietary copper. However, it was only signifi-
cantly elevated in CuMF female rats compared to mar-
ginal copper diet (CuM) female rats. Plasma cholesterol
levels were not significantly changed by dietary fructose
or copper level in both male and female rats. Plasma
NEFA was significantly increased in CuAF male rats
compared to adequate copper diet (CuA) rats. In female
rats, fructose feeding led to a trend of an increase in
plasma NEFA levels. Plasma glucose level was signifi-
cantly elevated by fructose feeding in female rats regard-
less of dietary copper level, whereas this effect was only
observed in male CuA rats (Tables 1 and 2). Collectively,
plasma lipids and glucose display distinct alterations in
response to dietary copper and fructose between male
and female rats.

Hepatic manifestations in response to dietary copper-
fructose interaction in male and female rats
Neither male nor female rats showed obvious liver injury
in terms of plasma ALT and AST after being exposed to
CuA or CuM diets with or without 10% fructose (w/v)
for 8 weeks (Fig. 2a). Three of eight female rats fed with
CuA plus fructose (CuAF) developed mild steatosis,
characterized with macrosteatosis around the portal
area. Only very mild microsteatosis could be visualized
in either CuMF female rats or male rats fed with mar-
ginal copper diet and/or fructose (Fig. 2b). Consistently,
hepatic triglyceride was significantly elevated in CuAF
female rats compared to control rats (Fig. 2c). Compared
to our previous study with AIN-76 diet (containing 49%
sucrose) and 30% fructose (w/v) in the drinking water
[21], the extent of hepatic steatosis is mild and no appar-
ent liver injury was detected. Despite there being only
mild steatosis induced under the current conditions, sex
differences still were detected, with female CuAF rats
showing hepatic steatosis.

Distinct alterations of fecal gut microbiota in response to
dietary copper and fructose between male and female
rats as analyzed by 16S rRNA sequencing
To examine whether copper-fructose interaction alters
the gut microbiome in a sex-specific manner, we per-
formed 16S rRNA sequencing of fecal stool DNA. In
male rats, either fructose or CuM resulted in a trend of
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decrease in alpha-diversity in terms of the observed
OTU. However, only the difference between CuA and
CuAF reached statistical significance (CuA versus CuAF,
p = 0.037), suggesting fructose feeding led to reduced
species richness in male rats [56]. There were no signifi-
cant differences between groups of female rats in terms

of observed OTU, suggesting neither fructose nor CuM
alters the species richness of the gut microbiota in fe-
male rats. There was no significant difference between
groups of both male and female rats in terms of
Shannon index (Fig. 3a, supplementary Table 1). Beta-
diversity was evaluated by UniFrac analysis [46].

Table 1 Effects of dietary fructose and marginal copper deficiency on metabolic phenotypes in male rats

Variable CuA
(n = 7)

CuAF
(n = 8)

CuM
(n = 7)

CuMF
(n = 8)

P value of factors (two-way ANOVA)

Body weight (BW, g) 347 ± 20.6 346.4 ± 19.6 351.7 ± 24.5 346.2 ± 16.8 NS

BW gain (g) 287.9 ± 18.9 285.4 ± 19 291.6 ± 23.1 285.9 ± 18.5 NS

Liver weight (LW, g) 13.07 ± 0.8 13.71 ± 0.79 12.31 ± 1.25 13.15 ± 2.14 NS

LW/BW (%) 3.763 ± 0.115 3.958 ± 0.131 3.501 ± 0.241# 3.783 ± 0.438 Cu, p = 0.0357
F, p = 0.0228

White adipose weight (WAT, g) 3.949 ± 0.383 4.149 ± 0.897 3.347 ± 0.25 3.831 ± 0.529 Cu, p = 0.0408

WAT/BW (%) 1.14 ± 0.13 1.19 ± 0.199 0.953 ± 0.048 1.107 ± 0.152 Cu, p = 0.0176

Energy efficiency ratio (EER, %) 7.78 ± 0.51 6.87 ± 046* 7.98 ± 0.63# 6.85 ± 0.44*$ F, p < 0.0001

Cecum weight (g) 2.736 ± 0.366 2.528 ± 0.276 2.909 ± 0.294 2.718 ± 0.202 NS

Food consumption (g/rat/day) 17.58 ± 2.88 13.93 ± 2.04* 17.36 ± 3.13 14.06 ± 2.07* F, p = 0.0007

Water intake (ml/rat/day) 26.18 ± 6.31 53.63 ± 17.01* 24.52 ± 5.86# 53.73 ± 20.79*$ F, p < 0.0001

Energy intake (Kcal/rat/day) 66.11 ± 10.81 74.13 ± 12.30 65.26 ± 12.77 74.52 ± 13.50 NS

Plasma TG (mg/dL) 49.01 ± 13.26 95.08 ± 53.56* 36.83 ± 10.66# 91.86 ± 25.76$ F, p = 0.0002

Plasma cholesterol (mg/dL) 53.28 ± 20.19 53.43 ± 23.13 52.58 ± 13.94 41.73 ± 24.4 NS

Plasma NEFA (μM) 203.6 ± 49.3 400.5 ± 144.7* 263.1 ± 97.4 273.8 ± 64.6 F, p = 0.0073
Cu x F, p = 0.0149

Plasma glucose (mg/dL) 104.9 ± 18.8 147.3 ± 23.7* 119 ± 14.2 129.9 ± 16.4# F, p = 0.0012
Cu x F, p = 0.0394

Male and female weanling Sprague-Dawley rats from the Harlan Laboratories (Indianapolis, IN) were fed (ad lib) a modified AIN-93G purified rodent diet with
defined copper content in the form of cupric carbonate for 8 weeks. The copper content is 6 mg/kg in an adequate copper diet (DYET# 115612) and 1.5 mg/kg in
a marginal copper deficient diet (DYET# 115581), respectively. Animals had free access to either deionized water or deionized water containing 10% fructose (w/v)
as the only drink during the 8-week experiment. The animals were single housed in stainless steel cages rinsed with EDTA in a temperature and humidity-
controlled room with a 12:12-h light–dark cycle. Data are expressed as means ± SD (n = 7–8) and analyzed by two-way ANOVA testing factors of copper (Cu),
fructose (F), and interactions (Cu × F), followed by Tukey’s multiple comparison test. Statistical significance was set to p ≤ 0.05. P values are displayed for the
factors Cu, F, and Cu × F. NS, p > 0.05. * versus CuA; # versus CuAF; $ versus CuM
CuA adequate copper diet, CuM marginal copper deficient diet, CuAF adequate copper diet +10% fructose drinking, CuMF marginal copper deficient diet +10%
fructose drinking, TG triglyceride, NEFA nonesterified fatty acids

Fig. 1 Body weight and calorie intake throughout the 8 weeks of the experiment. Male and female weanling Sprague-Dawley rats were fed with
adequate or marginal copper diet and had free access to deionized water or deionized water containing 10% fructose (w/v) for 8 weeks as
described in the “Materials and Methods” section. Data represent means ± SD (n = 7–8). Cu, copper; A, adequate copper diet; AF, adequate
copper diet +10% fructose (w/v) in the drinking water; M, marginal copper diet; MF, marginal copper diet +10% fructose (w/v) in the
drinking water
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Unweighted UniFrac is a qualitative β-diversity measure,
which detects the difference in the presence or absence
of lineages of bacteria in different communities [57]. Un-
weighted UniFrac analysis demonstrated that the mean
distance between groups CuA and CuAF, CuA and
CuM, and CuA and CuMF were significantly different in
male rats (p < 0.05) (Fig. 3b, right panel, supplementary
Table 2). In female rats, unweighted UniFrac analysis
showed significant differences were between groups
CuM and CuMF, and CuA and CuMF (p < 0.05) (Fig.
3b, right panel, supplementary Table 2). The weighted
UniFrac measure was used for detecting differences in
abundance [57], and no significant differences were de-
tected between the four treatment groups in male or fe-
male rats (Fig. 3b, left panel, supplementary Table 2).
These results suggested that either dietary fructose
(CuAF) or copper (CuM) or the combined effects
(CuMF) alter bacterial communities in male rats.
However, bacterial communities were altered by dietary
copper (CuM) or copper plus fructose (CuMF) in female
rats. Moreover, the baseline bacterial communities
(CuA) were significantly different between male and
female rats.
At the phylum level, fructose feeding led to a remark-

able increase in the abundance of Bacteroidetes and

Proteobacteria and a decrease in Firmicutes independent
of dietary copper content. In male rats, only the abun-
dance of Bacteroidetes and Proteobacteria was altered by
dietary fructose, and the effect was less pronounced
compared to female rats (Fig. 3c, supplementary Tables
3 and 4). In agreement with this, more families and gen-
era under the phyla Bacteroidetes, Firmicutes, and Pro-
teobacteria were altered in female rats compared to male
rats. For example, Bacteroidaceae, Bacteroides, Lachnos-
piraceae, Erysipelotrichaceae, Allobaculum, Alcaligen-
aceae, and Sutterella were markedly shifted in female
rats, but not in male rats. Even among the commonly
changed taxa, such as Porphyromonadaceae, Parabacter-
oides, and Blautia, the factors leading to such changes
are different between males and females, as shown by
two-way ANOVA (supplementary Tables 3, 4, 5, 6 and
Fig. 4). In addition to the sex differences in response to
dietary fructose and marginal copper, the composition of
gut microbiota is also different between male and female
rats when exposed to adequate copper diet, which was
considered as a normal control. A higher abundance of
Firmicutes and a lower abundance of Bacteroidetes were
observed in female rats than in male rats, leading to a
higher Firmicutes/Bacteroidetes ratio in females rats
(12.06 versus 7.47, female versus male), which was

Table 2 Effects of dietary fructose and marginal copper deficiency on metabolic phenotypes in female rats

Variable CuA
(n = 7)

CuAF
(n = 8)

CuM
(n = 7)

CuMF
(n = 8)

P value of factors (two-way ANOVA)

Body weight (BW, g) 235.4 ± 13.7 220.5 ± 14 217.7 ± 17.4 220.0 ± 18.6 NS

BW gain (g) 181.2 ± 14.1 166.1 ± 13.1 163.1 ± 18.1 167.2 ± 18.1 NS

Liver weight (LW, g) 7.5 ± 0.55 7.66 ± 0.95 6.86 ± 0.77 6.92 ± 0.81 Cu, p = 0.0256

LW/BW (%) 3.184 ± 0.114 3.469 ± 0.26* 3.144 ± 0.133# 3.114 ± 0.167# Cu, p = 0.0061
Cu × F, p = 0.025

White adipose weight (WAT, g) 2.961 ± 0.944 3.354 ± 0.792 2.256 ± 0.504 3.523 ± 1.309 F, p = 0.0239

WAT/BW (%) 1.251 ± 0.364 1.512 ± 0.285 1.032 ± 0.195 1.571 ± 0.532 F, p = 0.0067

Energy efficiency ratio (EER, %) 6.35 ± 0.50 5.22 ± 0.41* 6.07 ± 0.67# 5.36 ± 0.58* F, p < 0.0001

Cecum weight (g) 2.233 ± 0.333 1.887 ± 0.489 2.107 ± 0.637 1.997 ± 0.276 NS

Food consumption (g/rat/day) 13.55 ± 1.47 10.17 ± 0.84* 12.77 ± 1.12# 10.39 ± 1.06*$ F, p < 0.0001

Water intake (ml/rat/day) 23.05 ± 3.92 45.91 ± 14.32* 24.46 ± 4.31# 41.0 ± 12.18*$ F, p < 0.0001

Energy intake (Kcal/rat/day) 50.96 ± 5.54 56.87 ± 6.89 48.01 ± 4.20# 55.74 ± 6.41 F, p = 0.0031

Plasma TG (mg/dL) 26.15 ± 4.74 39.71 ± 11.84 19.29 ± 6.14# 38.7 ± 13.43$ F, p = 0.0001

Plasma Cholesterol (mg/dL) 28.47 ± 23.6 36.91 ± 18.28 29.78 ± 11.89 43.76 ± 12.97 NS

Plasma NEFA (μM) 202.4 ± 33.9 289.6 ± 73.6 232.4 ± 72 267 ± 77.7 F, p = 0.0205

Plasma glucose (mg/dL) 111.5 ± 3.8 142.7 ± 28.1* 110 ± 8.3# 140.5 ± 21.8*$ F, p = 0.0001

Male and female weanling Sprague-Dawley rats from the Harlan Laboratories (Indianapolis, IN) were fed (ad lib) a modified AIN-93G purified rodent diet with
defined copper content in the form of cupric carbonate for 8 weeks. The copper content is 6 mg/kg in an adequate copper diet (DYET# 115612) and 1.5 mg/kg in
a marginal copper deficient diet (DYET# 115581), respectively. Animals had free access to either deionized water or deionized water containing 10% fructose (w/v)
as the only drink during the 8-week experiment. The animals were single housed in stainless steel cages rinsed with EDTA in a temperature and humidity-
controlled room with a 12:12-h light–dark cycle. Data are expressed as means ± SD (n = 7–8) and analyzed by two-way ANOVA testing factors of copper (Cu),
fructose (F), and interactions (Cu × F), followed by Tukey’s multiple comparison test. Statistical significance was set to p ≤ 0.05. P values are displayed for the
factors Cu, F, and Cu × F. NS, p > 0.05. * versus CuA; # versus CuAF; $ versus CuM
CuA adequate copper diet, CuM marginal copper deficient diet, CuAF adequate copper diet +10% fructose drinking, CuMF marginal copper deficient diet +10%
fructose drinking, TG triglyceride, NEFA nonesterified fatty acids
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considered an obese phenotype contributing to increased
capacity of energy harvesting from diet [58]. Sex differ-
ences also exist in the abundance of Lactobacillaceae
and Lactobacillus (9.39 versus 20.72, female versus
male), Clostridiaceae (15.99 versus 8.69, female versus
male), Ruminococcaceae (20.9 versus 17.85, female ver-
sus male), and Lachnospiraceae (17.25 versus 11.86, fe-
male versus male).
Collectively, female rats exhibit more pronounced al-

terations of gut microbiota, and fructose plays a domin-
ant role.

LEfSe identified microbiota signature associated with
dietary copper and fructose
To further identify more specific taxa changes in gut
microbiome by dietary copper and fructose, LEfSe ana-
lysis was performed using 16S rRNA metagenomic data
[47]. Fifteen and 26 differentially abundant taxa were
identified with LDA score higher than 2 in male and fe-
male rats, respectively (Fig. 5a and b). The Proteobac-
teria and Bacteroidetes were enriched in the CuAF and
CuMF group, respectively, in both male and female rats.
No specific taxa were identified to be enriched in CuM

Fig. 2 Effects of dietary copper-fructose interaction on plasma ALT, AST, liver histology, and fat accumulation. a Plasma ALT and AST. b
Representative photos of liver histology using H&E staining. c Hepatic triglyceride. CuAF female rats had macrosteatosis (arrows) around the
portal area. Microsteatosis (arrowheads) was observed in female CuMF rats as well as in some male rats as indicated. Data represent means ± SD
(n = 7–8). Statistical significance was set at p ≤ 0.05. P values displayed are for the factors copper (Cu), fructose (F), and interaction (Cu × F) using
two-way ANOVA followed with Tukey’s multiple comparisons test. A, adequate copper diet; AF, adequate copper diet +10% fructose (w/v) in the
drinking water; M, marginal copper diet; MF, marginal copper diet +10% fructose (w/v) in the drinking water
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Fig. 3 Effects of dietary copper and fructose on gut bacterial diversity and abundance. a Alpha-diversity: alpha rarefaction curves with each
treatment using observed OTU measure and Shannon index. b Beta-diversity: weighted and unweighted UniFrac. c Taxonomic composition
(percentage) of the gut microbiota at the phylum level. Cu, copper; A, adequate copper diet; AF, adequate copper diet +10% fructose (w/v) in the
drinking water; M, marginal copper diet; MF, marginal copper diet +10% fructose (w/v) in the drinking water. M (first letter in the group name),
male; F (first letter in the group name), female
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Fig. 4 Relative abundance of gut microbiota at the genus level. Heatmap showing the abundance of 73 fecal gut microbes in a Male rats and b
Female rats. Data represent means ± SD (n = 7–8). Statistical significance was set at p ≤ 0.05. P values displayed are for the factors copper (Cu),
fructose (F), and interaction (Cu × F) by two-way ANOVA with Tukey’s multiple comparisons test. * versus CuA; # versus CuAF; $ versus CuM. A,
adequate copper diet; AF, adequate copper diet +10% fructose (w/v) in the drinking water; M, marginal copper diet; MF, marginal copper diet
+10% fructose (w/v) in the drinking water
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male rats. The highest number of abundant taxa was in
the CuMF group (7 of 15 in male and 12 of 26 in fe-
male). Sex differences in abundance also existed in CuA
rats, which were considered as normal controls. Female
CuA rats were characterized by enriched Firmicutes,

particularly, Lachnospiraceae. Of note, while Porphyro-
monadaceae and Parabacteroides were enriched in
CuMF male rats, they were also enriched in female
CuAF rats, which is consistent with the mean abundance
data analysis (supplementary Tables 3 and 4).

Fig. 5 Linear discriminant analysis (LDA) effect size (LEfSe) analysis identifies differentially abundant taxa induced by dietary copper and fructose.
Cladogram and histogram with LDA score ≥ 2 showing the features with differential abundance of taxa between groups in a male rats and b
female rats (Wilcoxon rank-sum test). c Venn diagram. Each circle’s diameter in the cladogram is proportional to the taxon’s abundance. From the
outer circle to the inner circle, the circles represent phyla, class, order, family, and genus. Differentially abundant taxa in specific groups were
represented in different colors with the exception that yellow represents non-significant in the cladogram. M, male; F, female; Cu, copper; A,
adequate copper diet; AF, adequate copper diet +10% fructose (w/v) in the drinking water; M, marginal copper diet; MF, marginal copper diet
+10% fructose (w/v) in the drinking water
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Particularly, abundant beta-Proteobacteria and Erysipe-
lotrichi in CuMF rats as well as abundant alpha-
Proteobacteria in CuAF rats were identified in female
rats. Thus, distinct abundant taxa were identified by
LEfSe analysis between male and females. We further
performed correlation analysis between liver fat content
and the genera identified by LEfSe analysis in female
CuAF rats. Unfortunately, the abundance levels of the
genera are not correlated with the liver fat content (sup-
plementary figure 2).
To further explore the functional changes of gut

microbiome in response to dietary copper and fructose,
we performed PICRUSt2 analysis. In male rats, 40 sig-
nificant differences in the functional profiles were identi-
fied by PICRUSt2 analysis between groups CuA and
CuM, mainly involving fatty acid biosynthesis, electron
carrier biosynthesis, lipopolysaccharide biosynthesis, and
vitamin B6 biosynthesis, which were enriched in CuM
male rats. Twenty-three significantly enriched pathways
were predicted in male CuAF rats compared to male
CuA rats. In female rats, 34 significant differences in the
functional profiles were identified between CuA and
CuMF groups, involving branched chain amino acid
biosynthesis, fermentation, nucleotide biosynthesis and
degradation, folate biosynthesis, and phospholipid
biosynthesis, with lower abundance in CuMF rats
(supplementary Table 7). Taken together, significant
functional alterations of microbiota in female rats were
induced mainly by the combined effects of copper and
fructose (CuMF), whereas they were induced by either
copper or fructose singly in male rats.
The Venn diagram plot showed 51 shared genera by

four groups in both male and female rats. There are total
65 and 56 detected genera in male and female rats, re-
spectively. Fructose and marginal copper led to reduced
genera in male rats, but an increase in female rats. Six
genera were not altered by fructose or marginal copper
diet in male rats, but only two were not altered in female
rats (Fig. 5c), suggesting more genera abundance
changes occur in female rats.

Sex differences in fecal short-chain fatty acids in response
to dietary copper-fructose interaction
To better understand the sex differences in microbial ac-
tivities induced by dietary copper and fructose, we mea-
sured SCFAs by GC-MS in cecal and fecal contents.
Acetate, propionate, and butyrate are the predominant
SCFAs in cecal and fecal contents. Overall, the levels of
total as well as individual SCFAs were higher in cecal
contents than that in fecal contents in both male and fe-
male rats. While the level of total cecal SCFAs is higher
in males, the level of total fecal SCFAs are comparable
between male and female rats. Fructose feeding resulted
in a decrease of total SCFAs in both cecal and fecal

contents in CuA- and CuM-fed rats; however, a signifi-
cant decrease was found in female CuMF rats. A similar
trend of alterations in SCFAs, but to a lesser extent, was
observed in male rats, as shown in Fig. 6a. Consistently,
acetate, propionate, and butyrate were all markedly de-
creased in female CuMF rats (Fig. 6b). In addition, de-
creased total SCFAs was associated with the relatively
increased proportion of acetate and decreased propor-
tion of butyrate in both cecal (acetate to propionate to
butyrate = 63.3:18.4:18.4 versus 66.9:19.5:13.6; CuA ver-
sus CuMF) and fecal stool (68.7:13.1:18.2 versus 73.7:
16.6:9.7; CuA versus CuMF) of female CuMF rats. This
effect was less prominent in male rats (Fig. 6c). Collect-
ively, a substantial decrease of SCFAs was seen in female
rats and profoundly so in the CuMF group. Two-way
ANOVA showed that the alteration in SCFAs was most
likely due to the additive effect of copper and fructose in
female rats, but the decrease in SCFAs in male rats was
only attributable to copper.

Discussion
Copper-fructose interaction-induced metabolic effects
exhibit sex dimorphism [23, 25]. Sex-specific alterations
of gut microbiota in response to a specific diet have been
demonstrated in a variety of studies [59–61]. Given that
the gut microbiota play a causal role in driving the de-
velopment of metabolic diseases, we aimed to determine
whether sex-specific alterations of the gut microbiota
are linked to hepatic steatosis. Our data showed that sex
differences do exist in the gut microbiota, gut microbiota
metabolites such as SCFAs, and hepatic steatosis follow-
ing dietary copper and fructose exposure. Female rats
exhibited more pronounced alterations in the abundance
of various taxa than that did male rats at multiple taxa
levels, including phylum, family, and genus. The number
of distinct abundant taxa identified by LEfSe was also
higher in female rats than in male rats. In addition,
SCFAs were decreased to a greater extent in female rats
compared to male rats, particularly in the CuMF group.
Moreover, female rats with an adequate copper diet de-
veloped mild, but apparent steatosis after 8 weeks of
added fructose feeding (CuAF), but female CuMF rats,
which showed the most significantly altered gut micro-
bial activity, did not. Therefore, the altered gut microbial
activity does not correlate with the hepatic fat
accumulation.
SCFAs are the end products of microbial fermentation

of indigestible fiber, and they play a critical role in en-
ergy homeostasis and metabolism [62]. In our study, we
found significantly decreased SCFAs, particularly butyr-
ate, concomitant with the reduced butyrate producers,
Lachnospiraceae and Ruminococcaceae [63], in CuMF
female rats, implying that the most significantly altered
gut microbial activities were in this group. We found
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mild hepatic steatosis in CuAF female rats; thus, it is un-
likely that this hepatic steatosis is attributable to the
metabolic effects of gut microbiota. Accelerated de novo
lipogenesis (DNL) is known to contribute to fructose-
induced hepatic steatosis [64, 65]. However, the
underlying mechanisms are unclear. A recent study
demonstrated a two-point mechanism leading to
fructose-induced hepatic steatosis. One part is gut
bacteria-derived acetate which serves as a substrate for
acetyl-CoA synthesis via acyl-CoA synthetase short-
chain family member 2 (ACSS2) in the liver. Second,
fructose metabolism in hepatocytes activates a signal
leading to lipogenic gene expression [66]. Interestingly,
the most significantly changed SCFAs occurred in CuMF
rats. We also observed this effect in our previous study
when rats were exposed to a high-fructose diet via 30%
fructose (w/v) in the drinking water and sucrose-
enriched diet (AIN-76) [21]. This finding suggests that
hepatic steatosis may be related to the amount of fruc-
tose intake. In support of this, a recent study demon-
strated that dietary fructose is primarily metabolized in
the small intestine and only excess fructose intake spills
over to the colon microbiota and the liver [67]. Previous
studies showed that either inhibition of fructose metab-
olism in the liver [68] or elimination of gut microbiota
by antibiotics [69] protected against fructose-induced
hepatic steatosis, indicating that fructose metabolism in
both the liver and gut microbiota is required to facilitate
the development of steatosis. When a large amount of

fructose intake saturates the capacity of the small intes-
tine metabolism, presumably excess fructose will
proceed to the colon, the gut microbiota, and the liver.
However, the priority of excess fructose to be distributed
and metabolized in colon microbiota or the liver or
other tissues is unclear when a modest amount of
fructose was ingested. It has been shown that dietary
copper-fructose interaction exacerbates copper
deficiency-induced metabolic syndrome, likely due to
impaired intestinal copper absorption because of excess
fructose ingestion [21, 70]. Whether the extent of inter-
action relates to the relative amounts of copper and/or
fructose, and subsequent metabolic effects, remains
largely unknown and warrants further study.
Despite significantly changed gut microbiota and de-

creased SCFAs in CuMF rats, only a few of the female
rats in the CuAF group developed modest steatosis, sug-
gesting decreased SCFAs and the altered gut microbial
activities were not sufficient to lead to hepatic steatosis
in female CuMF rats. Of note, Porphyromonadaceae and
Parabacteroides are two of the microbiota signatures as-
sociated with the CuAF diet in female rats, although
with relatively low abundance (1.52%), which is different
from male rats identified by LEfSe. Whether increased
abundance of Porphyromonadaceae and Parabacteroides
plays a causal role in fructose-induced hepatic steatosis
needs to be examined.
Sex differences in fructose-induced metabolic effects

are mixed [24, 71, 72]. In contrast to previous studies on

Fig. 6 Alterations of cecal and fecal SCFA levels induced by dietary copper and fructose. a Total SCFA levels. b SCFA levels (C2–C4). c Percentage
of total SCFAs. Data represent means ± SD (n = 7–8). Statistical significance was set at p ≤ 0.05. P values displayed are for the factors copper (Cu),
fructose (F), and interaction (Cu × F) by two-way ANOVA with Tukey’s multiple comparisons test. * versus CuA; # versus CuAF; $ versus CuM. Cu,
copper; A, adequate copper diet; AF, adequate copper diet +10% fructose (w/v) in the drinking water; M, marginal copper diet; MF, marginal
copper diet +10% fructose (w/v) in the drinking water. C2, acetic acid; C3, propionic acid; C4, butyric acid
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copper-fructose interactions [23, 25, 26], our results
showed that female rats are relatively sensitive to
fructose-induced hepatic steatosis. The discrepancy may
be attributed to several factors. First is the dose of cop-
per and fructose. A lower dose of copper (0.6 ppm) and
a higher dose of fructose (30–62%) were used in Field’s
as well as in Morrell’s studies [23, 26]. It appeared that
males are more sensitive to the deleterious effects of
copper deficiency. In our study, marginal copper diet
(1.5 ppm) and 10% fructose (w/v) in the drinking water
were used, presumably leading to less-pronounced
copper-fructose interactions and metabolic effects than
previous studies [23, 26]. Second, the activities of
fructose-metabolizing enzymes and intermediate metab-
olites differed by sex and copper level [73]. In fact, the
activities of liver enzymes involved in lipogenesis were
affected not only by the type of carbohydrate but also by
the quantity [74]. Lastly, differences in facilities, diet
components, and species as well as experimental dura-
tions may all contribute to discrepancy [25, 75, 76].
In support of our results, a previous study demon-

strated that weanling female rats exhibit a higher rate of
acetate incorporation into lipids in the liver compared to
male rats [77], suggesting a higher lipogenic capacity in
female rats. However, there is a different species driving
the lipogenic enzyme activity in response to carbohy-
drate [74]. In human studies, the fructose-induced in-
crease in hepatic DNL and decrease in fatty acid
oxidation were more pronounced in men and premeno-
pausal women than in postmenopausal women [28, 65,
78, 79]. Sex hormones are known factors regulating sex
dimorphism of fructose-related metabolic effects [7].
However, the molecular underpinnings remain elusive.
Recent studies showed that GLUT8 mediates distinct
metabolic effects between males and females in response
to dietary fructose [29, 30, 80]. GLUT8 is a dual-
specificity glucose and fructose transporter, which was
found to be abundantly expressed in both murine and
human liver and intestine [30, 80, 81]. Interestingly,
while GLUT8 mutation does not alter intestinal fructose
absorption in male mice [29], it enhances intestinal
fructose absorption in female mice, which was associated
exacerbated hypertension, hyperinsulinemia, and hyper-
lipidemia in those animals when they were fed with
high-fructose diet [30]. Conversely, GLUT8-deficient
male mice are protected from high-fructose diet-induced
dyslipidemia, glucose intolerance, and hypertension [29].
These studies revealed an important molecular mechan-
ism underlying the tissue-specific and sex-specific diver-
gence in response to fructose.
A potential limitation of the current study is the one

time analysis of gut microbiota and hepatic steatosis. Al-
though female rats displayed earlier development of
steatosis, it is difficult to predict the ultimate severity of

steatosis and disease progression. Since male rats exhibit
decreased diversity of gut microbiome, and given that
the microbial gene richness is associated with inflamma-
tion, insulin resistance, and dyslipidemia [82, 83], it is
plausible that male rats develop steatosis with a pro-
longed duration on the experimental regime. Thus,
long-term and multiple time points evaluation will pro-
vide more accurate profiles of disease progression in the
context of sex difference. However, sex differences ob-
served in animal studies are under strictly defined ex-
perimental conditions. Therefore, a caveat must be
noted when extrapolating animal data to human, as
humans have much more complex genetic and environ-
mental factors than experimental animals.

Perspectives and significance
In summary, our current study provides evidence of sex-
specific alterations in gut microbial abundance, activities,
and hepatic steatosis in response to dietary copper-
fructose interaction in a rat model. However, the correl-
ation of sex differences in hepatic steatosis and alterations
of gut microbial activities was not established in the
current experimental condition. Future studies
deciphering the molecular mechanisms as well as tissue-
specific effects would help us better understand sex-
specific responses to dietary copper-fructose interactions.

Conclusions
Our data demonstrated sex differences in the alterations
of gut microbial abundance, activities, and hepatic stea-
tosis in response to dietary copper-fructose interaction
in rats. The correlation between sex differences in meta-
bolic phenotypes and alterations of gut microbial activ-
ities remains elusive.
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